MikroMetric is a Lambda-oriented lightweight wrapper for producing AWS CloudWatch Embedded Metric Format-compatible metric logs.
MikroMetric is the quickest way to get going with AWS metrics (CloudWatch Embedded Metric Format):
putDimension()
, putMetric()
, setProperty()
, and flush()
aws-metadata-utils
(for picking out metadata)// ES5 format
const { MikroMetric } = require('mikrometric');
// ES6 format
import { MikroMetric } from 'mikrometric';
// Minimal usage
const mikroMetric = MikroMetric.start({ namespace: 'MyNamespace', serviceName: 'MyServiceName' });
// Using the AWS `event` and `context` objects
const mikroMetric = MikroMetric.start({
namespace: 'MyNamespace',
serviceName: 'MyServiceName',
event,
context
});
mikroMetric.putDimension('user', 'Sam Person');
mikroMetric.putMetric('duration', 83, 'Milliseconds');
mikroMetric.setProperty('correlationId', '8d5a0ba6-05e0-4c9b-bc7c-9164ea1bdedd');
mikroMetric.flush();
Provided full event
and context
objects, your metric log will look something like this in CloudWatch Logs:
{
"_aws": {
"Timestamp": 1668191447669,
"CloudWatchMetrics": [
{ "Namespace": "MyNamespace", "Dimensions": [["service"]], "Metrics": [] }
]
},
"accountId": "123412341234",
"correlationId": "6c933bd2-9535-45a8-b09c-84d00b4f50cc",
"functionMemorySize": "1024",
"functionName": "somestack-FunctionName",
"functionVersion": "$LATEST",
"id": "3be48135-927a-4f71-ac7e-94bcd30723ba",
"region": "eu-north-1",
"resource": "/functionName",
"runtime": "AWS_Lambda_nodejs16.x",
"service": "MyService",
"stage": "shared",
"timestamp": "2022-11-11T18:30:47.669Z",
"timestampEpoch": "1668191447669",
"timestampRequest": "1657389598171",
"user": "some user",
"viewerCountry": "SE"
}
MikroMetric will grab as many values as it can from the event
and context
objects. You will of course get fewer (or none) of the dynamic metadata values if these objects are not provided.
The namespace
and serviceName
may be passed in either manually at init-time (as above), or be inferred via environment variables (see below). When initializing, some representation of these values must exist or an error will be thrown.
You can now use CloudWatch Logs Insights and CloudWatch Metrics to either search your logs or visualize your metrics.
For more learning resources regarding AWS observability solutions, see the One Observability Workshop, especially the page on EMF.
import { MikroMetric } from 'mikrometric';
// Use custom metadata
const metadataConfig = {
version: 1,
hostPlatform: 'aws',
owner: 'MyCompany',
domain: 'MyDomain',
system: 'MySystem',
team: 'MyTeam',
tags: ['backend', 'typescript', 'api', 'serverless', 'my-service'],
dataSensitivity: 'proprietary'
};
const mikroMetric = MikroMetric.start({
namespace: 'MyNamespace',
serviceName: 'MyServiceName',
metadataConfig
});
mikroMetric.putDimension('user', 'Sam Person');
mikroMetric.putMetric('duration', 83, 'Milliseconds');
mikroMetric.setProperty('correlationId', '8d5a0ba6-05e0-4c9b-bc7c-9164ea1bdedd');
"Flushing", or sending, logs is easy:
mikroMetric.flush();
Because this is assumed to be within an AWS Lambda context, then flushing is simply a case of logging out the metric data.
Flushing will reset the MikroMetric instance. See Reset
below.
mikroMetric.setCorrelationId('abc123');
mikroMetric.setNamespace('MyNewNamespace');
mikroMetric.getNamespace();
mikroMetric.getServiceName();
This resets the metric log context and therefore erases any dimensions, metrics, and properties.
mikroMetric.reset();
You can set MIKROMETRIC_NAMESPACE
and/or MIKROMETRIC_SERVICE_NAME
respectively as environment variables to use these at init time.
Any values manually passed in will always take precedence.
Output fields will be spread (and potentially deduplicating same-named properties) in the following order:
A higher number means that fields in that category will persist if any fields have same names in lower-numbered categories.
MIT. See LICENSE
file.
Generated using TypeDoc